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FOREWORD

This report was prepared by the University of Dayton Research Institute under Air Force
Contract No. F33615-95-D-5029, Delivery Order No. 0004. The work was administered under
the direction of the Nonmetallic Materials Division, Materials Directorate, Wright Laboratory,
Air Force Materie]l Command, with Dr. James R. McCoy (WL/MLBC) as Project Engineer.

This report was submitted in January 1997 and covers work conducted from 24 Jan 1996
through 14 Sep 1996.



1. INTRODUCTION

Development of a damage progression analysis in composites contains an appropriate
failure criterion and a numerical algorithm capable of incorporating the formation of new
boundaries in the material without restrictions imposed by initial mesh topology. A promising
approach to build such a numerical algorithm is local mesh overlay or local field enrichment
method described by Mote [1] and more recently by Raju [2], Fish [3], and Reddy [4]. The idea
is to add additional degrees of freedom to the initial mesh via superimposing a patch of elements
at the location of high local stress gradients, such as those produced by crack tip, etc., which
allows one to avoid changing the initial mesh and the rigidity matrix. Instead, the new degrees of
freedom are added as a separate block to the solution. Several issues are not displayed in the
literature regarding this method; an important question is the accuracy of satisfying the traction
continuity at the edge of the patch.



2. PROBLEM FORMULATION

Consider an elastic body occupying a volume V, containing a crack S (Figure 1a).
Displacement and traction boundary conditions are imposed over surfaces 0V, and oV,
respectively, where dV, + dVr, = V. We shall seek the displacements as a superposition of two

terms:

(%, 9,2) = U (x,y,2) +uf (%, 9,2) (1)

where ulp (x,y,z) are functions continuous through the entire body V, and u{ (x, y,z) are functions

discontinuous at the surface S. Displacement field (1) is assumed to be kinematically admissible.
In addition we define a volume I', which includes the crack surface S, which also may be a part

of the boundary oI". The functions «{ (x,y,z) are required to vanish outside and at the boundary

of the volume I'
ui (x,3,2) =0, {x,y,z/(x,y,z) ¢ T’ and (x,y,z) € dI - S}. (2)

It is noted that no assumptions are made by introducing Equations (1) and (2). The stress fields
corresponding to the displacement fields u,-o (x,y,z) and in general will be discontinuous at the

boundary dI" and

lim O%(M + fn; = lim [C3(M — B) + 05(M - fdlnj, B> 0 3)
B—0 B—-0

where M € dI" and # is an outside normal to oI". It is of practical interest of how to obtain the
class of solutions when ij(M )=0, Medl". The importance of this requirement can be
appreciated by using numerical approximations to obtain the displacement functions in Equation
(1). If this requirement is not satisfied, then the stress G?j will experience a discontinuity at the
boundary JI" which, if not properly built into displacement approximation u? (x,¥,z), will cause
oscillatory behavior. Yet the attractiveness of the entire concept of patch superposition lays in
the ability to use the same approximation for u,p (x,¥,z) as for the uncracked body. The
following variational equation will be shown to provide the condition O'fj (M)=0,Medl":
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where u(i,j) = E(Mi’j + um,i), O-lj = Qijklu(k,l), U(u(w)) = "2— ijklu(i’j)u(k,l), Qijkl are the elastic

constants, superscripts “c+” and “c-” denote the two crack faces, and T;'and 7;~ denote the

external tractions applied to the latter surfaces. The variation upon u{ (x,y,z) yields:

m oy, 0uldV + m(a?j, 0% oujdv +

V-r r
+[[ (03] v-r — oY Jn;0ulds + 5)
ar
[[@fn; —77"r8ulds + [[ (05 — 05 ;= T + 7164 = 0
Ny S

The surface integral upon JI" is obtained by taking into account the respective surface integral in
(5), where n; is an outwards relative to volume I" normal vector. The traction contributions of the
stresses, created by the u? (x,y,z) displacement field coming from the first and second volume
integral in Equation (4), are distinguished because according to Equation (3), they can be unequal
on the boundary oI". However due to arbitrary variation, 8u? on the boundary oI, we have

((Gglv—r(M)—O'glr(M))nj =0,Medl (6)

The surface integrals upon the crack surface and the external surface 0V are responsible for

satisfaction of the applied external traction boundary conditions.




Variation upon u; (x, y,z) provides:
—J"”‘ (0'2,1 + O'f]’] )514de +

+”( |1~ +0] )n 6ucds+ﬂ50',]nju?ds

[l +opny -1 as+ jj((oq + 0y~ I Yo=ds =0

Both surface integrals over JI" vanish, one due to the boundary condition (2) and the second due
to o}, ij(M)n; =0,M € oI, which follows from Equation (6).



3. COMPOSITE LAMINATE WITH A HOLE CONTAINING MATRIX CRACKS

Consider a rectangular orthotropic plate containing a circular hole having a diameter D as
shown in Figure 1b. The plate consists of N plies of total thickness H in the z-direction and has a
length L in the x-direction and width A in the y-direction. Uniaxial loading of the plate in the
x-direction is considered. At the opposite edges of the plate, x=0,L, constant displacement in the
x-direction is prescribed, and other displacement components at these edges are presumed to be

Z€10:

1, (0,¥,2) = —uy, u,(0,y,2) =, (0,5,2) = 0 o
ux(Lﬁyaz) =uy, uy(L,y,Z) = MZ(L,J’,Z) =0.

A cylindrical coordinate system 1,0,z is introduced at the center of the hole. The 8=0° coincides
with the x-axis.

A crack of length [ emanating from the hole edge at 6=Y), in the s-th ply and propagating
in the direction 8=0 is considered. The crack surface S is defined as

x =£2)—cos1//0 +&-Icosax+x.,0<EL],

D . .
y=—2-—sm1//0+§-lsma+yc,OS§S1, (8)
Z(S"'l) <z< Z(S)

where the s-th ply occupies a region 25D <779,




4. SPLINE APPROXIMATION OF DISPLACEMENTS

The displacement field u,-o (x,y,z) is approximated, according to Iarve [5]. Cubic spline
functions are used. The displacements are continuous through the laminate; the strains and
stresses are continuous within a homogeneous ply. Curvilinear transformation, which maps the
X,y plane of the plate with a hole into a region 0<p<1, 0<¢<2x, was defined as follows:

x=2F(p)cosg+ L F(pa9) +x,

D , €)
y=5F1(p)sin¢+A'Fz(p)ﬁ(¢)+yc
where
l+x-p,p<py 0.p<py
1+x-p,)(1- -
Rpy={8elop) o pey B =127 5 <ps<i

1-p, 1-pp

The coordinate line p=0 describes the contour of the hole, and the coordinate line p=1 describes
the rectangular contour of the plate. Inside the near-hole region, D/2<p<(1+x)D/2, which
corresponds to 0<p<py, a simple relationship between the cylindrical coordinates and the

. D . . . .
curvilinear coordinates p,$ exists: p —g = TKp and 6 = ¢ . The width of this region will be

chosen three-hole radii, i.e., xpp=3. Beyond this region a transition between the circular contour
of the opening and the rectangular contour of the plate occurs. Functions o(¢) and B(¢) were
defined [3], so that the parametric equations x=0()+X., y=P(¢)+y. describe the rectangular
contour of the plate, where osq)sq)“’ corresponds to O<x<L, y=A, ¢(‘)sq><¢(2) corresponds to x=0
O<y<A, ¢(2)s¢s¢(3) corresponds to 0<x<L and y=A and ¢(3)S¢<21t corresponds to x=L, 0<y<A.

2

Displacement components in the x, y and z coordinate directions were approximated by
using cubic polynomial spline function of generalized curvilinear coordinates p, ¢, and z as

follows:

uy = CIO7 W~ 7B -up + ZVEL -uy,
u, = CHZOV, (10)
u, = ch)if(s)Ws*-



where unknown vectors U, V,, W, contain unknown displacement spline approximation
coefficients. Bold type here and below will be used to designate matrices and vectors, and the
superscript star means the transpose operation. The vector of the three-dimensional spline

approximation functions was defined as:

{79} =R(p)2; )7 ),
q
g=1+(-Dn +3)+ =D+, I=1,...,n+3,j=1,....ki=1,...,m+3.

(11

where sets of B-type cubic basis spline functions {Ri(p)}m+3 {(I)i(¢)}l’.:3, {Z(‘)i(z)}?;'f?’ along

=]’
each coordinate were built upon subdivisions: 0=py<p;<..<p, =L 0= <P <. <@ =
om, 2V =zp<z1 <. < Zy = 2 so that the s-th ply occupies a region 2 <z <79, and n, is the
number of sublayers in each ply. The subdivision of the p coordinate is essentially nonuniform.
The interval size increases in geometric progression beginning at the hole edge. The region 0 < p
< py in which the curvilinear transformation is quasi-cylindrical, is subdivided into m, intervals,
so thatp, = Py - Numbers of intervals of subdivision m, k, ng in each direction, along with the
mesh nonuniformity characteristics such as my and the consecutive interval ratio, determine the
accuracy of the solution and the size of the problem. Nonsquare boundary matrices
C,9,C,®,C;® and constant vectors Ey,E, are defined, so that the approximation (10) provides a
kinematically admissible displacement field for any coefficients U;,V,Wj, i.e., satisfying
boundary conditions (7). The components of vectors Eq,E are equal to 1 if the same
components of 7' are nonzero at p=1, 0 P<o<0® (x=0, 0<y<A) and p=1, 0P<o<2m (x=L,
O<y<A), respectively. All other components of the vectors E,E, are equal to zero. The
boundary matrices are obtained by deleting a number of rows from the unit matrix. The rows 10

deleted are the ones having a nonzero scalar product with E, or Ej.

4.1 Model 1: Spline Approximation of Displacements in the Overlay Patch

The overlay displacement field u{ (x,y,z) was also approximated using cubic spline

functions. The location of the overlay mesh was defined by equations:
D d
x= ECOSW +&-\ I+ TZ—(COS(I//O + ) —cos(y — @)) |[cosax + x,,

y= -Zl?-sinl//+§-(l+§(cos(1//0 +a)—cos(vf—a)))sina+yc, (12)

V<<




where 0<EL1, yo-ASy<yo+A,. The boundary E=0 coincides with the part of the hole boundary,
and the boundary =1 is a straight line going through the crack tip. Boundaries y= yy-A,, y=
Vo~ A =VW_p <V_p 41 <-<VWo <Y <..<yp =y +A,. The subdivisions are uniform,
and the crack surface Y=\, is a coordinate line of the  subdivision, total number of intervals of

Yo+A, are parallel to the crack face. Subdivisions are introduced 0=£¢<§;<€< ... <& m, =

the y subdivision is k.=k;+k,. The coordinate z is subdivided into the same sublayers as the

laminate, i.e., z°7Y )

=79 <z <..<z, =2z . Anexample of the initial mesh (9) with m=18,
my=14, q=1.0, xpy=3, k=48, L/A=2, L/D=10, x=L/2, y.=A/2 is given in Figure 2a, an overlay
mesh with a=90°, y,=90°, m =9, k,=k,=7, Aj=A,=30°, 1=0.1L is shown in Figure 2b and
superimposed meshes in Figure 2c. Basic systems of spline functions are built upon the above
subdivisions. Two independent sets of splines are built upon y:k;+3 functions on the interval
Vo—A =VW_p <Y_; 4 <..<V¥, and ky+3 functions on the interval

Vo <Y <..<V¥;, =¥y +A,. That way no continuity conditions are imposed at y=y,. Spline

approximation of the overlay displacements can be expressed as
TN w5 = CSF VL, u = CS7 W, (13)

Zelq = B ©D5W)Z (2),
g=1+{G~-Dn;+3)+(@-D(n, +3)[k, +6],1=1,..,n,+3,j=1,...k, +6,i=1,...,m, +3.

Vectors U.,V.,W, contain the unknown spline approximation coefficients. Sets of basic spline
functions are denoted as iR,'-' (é)‘h:”1 , id),? (y/)}i;l , iZ,? (z)}i;1 , the z-functions are the same as
in (10). To provide the boundary conditions (2), the boundary matrices have to be defined, so
that all components of the spline function vector different from zero at y=y-A;, y=y+A,, E=1

& 222 will not contribute to displacement values. According to boundary properties

and z=z
of spline functions given by larve [5], the only components of the spline function vector
contributing at these surfaces are the ones containing functions <I>§(1//), =Lk +6;

R (&),i=m,+3and Zj(z),l =1, n, +3. The boundary matrices are obtained from unit
matrices by deleting the rows having a nonzero scalar product with E°, where a component of E°
is equal to unity if the corresponding component of the vector ¥, contains the aforementioned

functions and zero otherwise.
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Figure 2. (a) Original Mesh, (b) Overlay Mesh, and (c) the Superposition.
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4.2  Model 2: Spline Basis Decomposition Method

An alternative approach, which circumvents the compatibility conditions resolved by
functional (4), is to create a complete system of basic functions in the spline function space,
which provides displacement discontinuity along the crack surface S described by Equation (8).
It is possible to build such a basis without modifying the spline functions of approximation (10)
but rather by adding locally new splines to describe the discontinuity of displacements. The idea
will be illustrated on a one-dimensional example. Consider an interval subdivided into seven
subintervals (Figure 3). We shall build the spline approximation of a function f(x), which is
discontinuous at the point x=x,, and continuously differentiable elsewhere on the interval [x,,X;].
A straightforward solution lies in using two sets of spline basis functions built over intervals
[X0.X4] and [x4,X4], respectively. The total number of spline functions will be m+6, where m is
the number of intervals (m=7). In this case, however, most of the splines of such a basis do not
coincide with the spline functions of continuously differentiable approximation on the entire

interval [Xo,X7] as shown in Figure 3a. These functions are denoted {X3;(x)}i=1 m+3, SO that a
function f

m+3

f) =Y £iX5,(x)

i=1

is continuously differentiable at each point between x, and x;. New spline functions X3 ;(x) are
formed by partitioning splines which Xj;;(x4)>0. These new splines are defined as follows

X'3,,~(x) = { X3;(x),x2x4

O,X<X4

In the present example there are three new splines created i=5,6,7 as shown in Figure 3b. A
function f(x)

m+3 7
FO =Y fiX3;(0+ Y f: X5,(x) | (14)
i=1 i=5

is discontinuous at x=x, and continuously differentiable at all other points of the interval. It can
also be shown that functions {X3;(X) }iz1 m+3 and {X’3;(X) };=5 7 form a complete set of basis
functions. Thus we have built a complete set of basis functions by adding several new splines to
the initial continuous approximation spline functions.

11



(a)

(®)

Figure 3. Spline Basis Decomposition Method on a One-Dimensional Example: (a) Original,
Continuously Differentiable Basis Functions and (b) Additional Spline Functions.

In the case of a crack emanating from the hole edge, we need to build essentially )
a two-dimensional set of splines analogous to the X’ ;(x) in Equation (14). In the z-direction the
same spline functions as in the previous section will be used. A parametric representation &,t of

the x,y plane is defined:
D )
x= ECOSWO +&-lcosa—Tsina +x,,E>0

2 (15)
y= -:—Z—sim/lo +&-Isina—Tcosa+y,,E>0

The spline functions in Equation (11) are examined, and those nonzero at the crack line t=0 are

partitioned to create new spline functions
{Z} = R0z ), (16)

' ' R(P)D ($)ZD(2),720
R(p)0)20) ={ By 0o

12




Additional or superimposed spline approximations can be written similar to Equation (13):

u;:'clxcu u = SXC u —C3XC (17)

where the vector of spline functions is defined similar to (11), but only the spline functions (16)
are used. Variational formulation in this case is straightforward, since no incompatibility exists
between shape functions (11) and (17). The variational equation will be simplified as:

5(“‘.”] Uug ) +ug jy +u6; jy)dV
' (18)

(|77 ulds + H [Tt +ud)— T uf ™ + u?)]]
v

13



5. NUMERICAL RESULTS

A unidirectional AS4/3501-6 laminate [90,] was considered first. The mechanical
properties were E; = 138 GPa, E, = E; = 10.3 GPa, v;3 = V13, = 0.3, vp3 = 0.55, G, = G;3=5.52
GPa and G,; = 3.45 GPa. The geometric dimensions were L = 6.35 cm, A =L1/2, and the
diameter of a central hole was D =L/10. A crack /=0.1 L was considered emanating from the
hole edge at 6 = 90° (W, = 90°) in the o = 90° direction. The p,$ subdivision with m = 18, my=
14, q = 1.0, xp;, = 3, and k = 48, shown in Figure 2a, along with two sublayers in the z-direction,

were utilized to approximate the uio(x,y,z) displacement field.

Model 1 was used to approximate the overlay displacements. The overlay mesh was
imposed only on one side of the crack, so that A; = 30° and A, = 0, with 10 y-intervals between
Wo-A; and y,. Ten uniform & intervals were used. Stress distribution in the cross section 6 = 90°
as a function of distance from the hole edge is examined in Figure 4a. The oy, stress component
in the plate without a crack is shown for comparison by a thick dashed line. The stress results are
normalized to the average far-field stress in an uncracked laminate in the x-direction , calculated

as

HA

Cp = J Joxx(L, y,2)dydz.
00

The results for the cracked laminate are obtained using the variational equation (4), neglecting
the surface integral upon the boundary oI". Stress distribution in the cracked laminate is shown
by the solid and thin dashed lines. In addition the crack opening displacement is also shown,
normalized to the applied displacement u;, [Equation (7)]. Along the crack surface in the vicinity
of the crack tip O,y stress exhibits oscillatory behavior. However the true effect of the
incompatibility of the overlay and underlying meshes is clearly illustrated in Figure 4b, where the
stresses along the boundary of the patch region y = y,-A, are shown. The thin dashed line shows
the stress designated in (5) as O'Oxxl v-r(M), and the solid line stress ng[r(M )+ 0%, (M), where
MeoI'. A significant stress discontinuity is obvious. The solid dashed line shows the G, stress
in a cross section symmetric to y = Yy-A; against the plane 6 = 90°. Ideally, all three curves

shown in Figure 4b have to coincide.

Model 2 will be used to approximate the overlay displacements in the same problem. The
displacements uio(x,y,z) are the same as before. The superimposed shape functions are formed
according to rule (16) and no additional mesh is required. Variational Equation (18) is used.
Figure 5a shows the G, stress distribution in the cross section 6 = 90°. The thick dashed line

14
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was copied from Figure 4a. The stress calculated by using Model 2 for overlay displacement
approximation is shown by a thin solid line. No oscillations of the oy, stress along the crack face
is present. There is a region in the vicinity of the crack tip marked as a crack tip boundary
condition error. In this region both the crack opening displacement and the stress normal to the
crack faces are nonzero. By increasing the density of the subdivision by splitting four intervals
near the crack tip, this region reduces. The result for the increased subdivision is shown by a
thick solid line. The stresses at the same cross sections, as shown in Figure 4b, are displayed in
Figure 5b. The stress obtained by using Model 2 along the cross section y = Wyy-A;, and the one
symmetric against the plane 6 = 90°, are indistinguishably close-solid lines. The dashed line has
been copied from Figure 4b and shows overall agreement with the Model 2 results, except a kink
near the end of the pitch which is likely the result of untreated compatibility of the meshes in
Model 1. Figure 6 shows the hoop and the radial stress in uncracked and cracked laminates
obtained using Model 2. The displacement field in the uncracked laminate was approximated
according to (11) only. Stress is plotted versus the 8 angle at the midsurface. The presence of
the crack at 6 = 90° increases the hoop stress at 6 = 270°. An important observation is that the
accuracy of satisfaction of the traction-free boundary condition at the hole edge does not
deteriorate while enriching the spline approximation basis with functions (16). Indeed, the o,

stress distribution for uncracked and cracked laminates is practically the same.

0 80 180 270 360

Poiar angie

Figure 6. Radial and Hoop Stresses at the Midsurface Around the Circumference of the Hole of
the Uncracked and Cracked Laminate.
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A [0,] laminate is considered next. A matrix crack, tangential to the hole edge, is
modeled as two cracks of length [ = 0.1 L emanating at 6 = 90° (y = 90°) in o = 0° and o = 180°
directions. All of the following results are obtained with Model 2 overlay displacement
approximation. The applied displacement was up =up = 6.95 x 10° m. Contour plot of the uy in
units of meters is shown in Figure 7b inside the region designated in Figure 7a. The u, is
positive above the crack and negative below it, reflecting the fact that this crack is open. The
normal G,y and shear G, stresses are shown in Figure 7c and 7d. The presence of the crack

relieves both stresses in the area above the crack with only stress concentrations at the crack tips.

Finally, a [0/90]s laminate is considered. The same geometric dimensions as before are
used. Each ply is subdivided into two sublayers. Two matrix cracks Yo = 90° and y, = 270° are
considered in the 90° ply, as shown in Figure 8a. The oy stress around the hole edge is
examined at different through-the-thickness locations. Figure 8b displays the stresses at the
midsurface and the 0/90 interface in the 90° ply. The dashed lines are used for uncracked
laminates, and the solid lines for cracked laminates. At 6 = 90° and 270° locations at the
midsurface, G, vanishes at the crack surface. This stress redistribution is very local, and at
approximately +15° away from the crack locations, the stress is equal to that in the uncracked
laminate. At the ply interface the crack produces higher stresses because it is impending the
interface. In the 0° ply the stresses at 6 = 90° and 270° are slightly higher in the cracked laminate
than the uncracked one. It is expected due to the loss of load carrying capacity in the 90° ply.
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Figure 7. [0,] Laminate with a (a) Matrix Crack, (b) u, Displacement, (c) Oyy, and (d) Oy,.
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6. PUBLICATIONS AND PRESENTATIONS
The following publications and presentations were generated during this contractual period:

Iarve, E. V., & Jeffrey R. Schaff. (1996, September). Stress Analysis of Open and Fastener
Hole Composites Based on Three-Dimensional Spline Variational Technique. Paper presented at
AGARD 83 SMP Meeting, Florence, Italy.

Iarve, E. V. (1995). Three-Dimensional Stress Analysis of Fastener Hole Composites.
Proceedings of the ASME Materials Division (MD-Vol. 69-1, 1995 IMECE).

Tarve, E. V. (1996). Spline Variational Three-Dimensional Stress Analysis of Laminated
Composite Plates with Open Holes. Int. J. of Solids & Structures 33(14) (pp. 2095-2118).
Tarve, E. V. (1996, September). 3-D Stress Analysis of Composite Laminates with Matrix
Cracks Using SVELT. 1996 SVELT Workshop, WPAFB, OH.
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